La Materia Oscura

Marco Vignati

Istituto Nazionale di Fisica Nucleare

Dipartimento di Fisica, Sapienza Università di Roma

Il sistema solare

La legge della gravitazione di Newton ci dice che:

velocità di un pianeta = $\sqrt{G_{\text{Newton}}} \frac{\text{Massa del sole}}{\text{distanza dal sole}}$

In un grafico

Velocità di rotazione in una galassia

È come se ci fosse della materia in più di cui vediamo gli effetti gravitazionali ma che è invisibile.

Lenti gravitazionali

Questo metodo viene utilizzato per tracciare la mappa della materia oscura nell'Universo.

La materia oscura ha ricoperto un ruolo determinante nella formazione delle Galassie.

La composizione dell'Universo

Cosa è l'energia oscura? Non ne abbiamo idea! Per ora ci concentriamo sulla materia oscura.

Cosa è la Materia Oscura?

Cosa sappiamo

Interagisce molto poco con la materia ordinaria.

Non emette e non assorbe luce.

Siamo sensibili solo agli effetti gravitazionali.

Cosa non è

Una nuova particella?

Materia ordinaria e particelle

Protone = 3 quark

Atomo = elettroni + nucleo Nucleo = protoni + neutroni

Il modello standard

Una nuova particella?

- Problemi:
 - Non sappiamo cosa sia, quindi non sappiamo quale è il modo giusto per vederla.
 - Bassa densità. Circa 1 protone equivalente in 3 cm³.
 - È in grado di attraversare la terra senza interagire.

- Almeno 2 candidate:
 - Particella leggera (Assione) che può interagire con i campi magnetici.
 - Particella pesante (WIMP).

L'ipotesi WIMP

- Proprietà di una WIMP (Weak Interacting Massive Particle):
 - È una particella pesante 1 ÷ 1000 protoni equivalenti.
- Principio di rivelazione: urto elastico con nuclei atomici di materia ordinaria.

Rivelazione di WIMP

L'urto WIMP-Nucleo, se avviene, avviene molto raramente:

• 1 urto all'anno in 1 ÷ 100 kg di materiale.

Questi segnali possono essere nascosti dal fondo: urti indotti da altri eventi naturali. Uno tipo di fondo è la radioattività (particelle $\alpha \beta \gamma$).

Bisogna lavorare in ambienti a bassa radioattività.

Raggi cosmici

Particelle (principalmente protoni) generate dalle stelle e dalle galassie che collidono con l'atmosfera terrestre, producendo altre particelle.

Si stimano sulla terra circa: 1 milione di particelle / (m² ora).

Laboratori del Gran Sasso

Esperimenti per la ricerca di Materia Oscura

L'esperimento Xenon

L'esperimento Xenon: risultati

Xenon non ha visto la materia oscura.

Ancora più grande: 1 tonnellata

La modulazione annuale

- La terra è attraversata da un "vento" di WIMP.
- A causa della rotazione attorno al sole, la terra a volte va incontro mentre a volte scappa dal vento.
- Ci aspettiamo che il numero di interazioni oscilli con periodo annuale 20

L'esperimento DAMA

- 250 kg di lodurio di Sodio (Nal), monitorati da fotomoltiplicatori.
- Bassissima radioattività di tutti i materiali dell'esperimento.
- Cerca un segnale di modulazione annuale, ma non distingue radioattività da WIMP.

Risultati di DAMA

Si vede un segnale di modulazione. Gli scienziati di DAMA pensano che si tratti di materia oscura.

> Tutti gli altri esperimenti tuttavia ancora non hanno confermato questo risultato.

SABRE

Il metodo scientifico richiede una conferma indipendente

SABRE

Lavori in Corso

.....

Laboratori sotterranei

